Homework 4 Due: May 13 2024

Let U_ε = u + εw, where ε ∈ ℝ. Note every member of the trial solution space S can be represented in the form of U_ε. for some test function w ∈ V and ε ∈ ℝ. Define the potential energy by

$$I(\boldsymbol{U}_{\epsilon}) = \frac{1}{2}a(\boldsymbol{U}_{\epsilon}, \boldsymbol{U}_{\epsilon}) - (\boldsymbol{U}_{\epsilon}, \boldsymbol{l}) - (\boldsymbol{U}_{\epsilon}, \boldsymbol{h})_{\Gamma},$$

Where $a(\cdot, \cdot)$ is the bilinear form for linear elasticity. Establish the following results.

- a) The potential energy is stationary (i.e., $(dI(U_{\epsilon})/d\epsilon)|_{\epsilon=0} = 0)$ if and only if the variational equation for linear elasticity is satisfied.
- b) The potential energy is minimized at u, that is, $I(u) \le I(u + \epsilon w)$ for all $w \in \mathcal{V}$ and $\epsilon \in \mathbb{R}$. (*Hint*: Use part (a) and show that $(d^2 I(U_{\epsilon})/d\epsilon^2)|_{\epsilon=0} = a(w, w) \ge 0$.)
- c) The approximate solution overestimates the potential energy, i.e., $I(\boldsymbol{u}^h) \ge I(\boldsymbol{u})$. (*Hint*: This follows immediately from $\boldsymbol{S}^h \subset \boldsymbol{S}$.)
- 2. Consider the uniform deformation given by the placement mapping

$$\varphi(X) = \begin{pmatrix} \frac{1}{4}(18 + 4X_1 + 6X_2) \\ \frac{1}{4}(14 + 6X_2) \end{pmatrix}$$

- a) Draw the deformed state of the body $\Omega_X = (-1,1)^2$.
- b) Calculate F, F^{-1} , F^{T} , and F^{-T} .
- c) Consider the vectors $(1,0)^T$ and $(0,1)^T$ in the initial configuration. Obtain their deformed counterparts in the current configuration.
- 3. Consider an $n \times n$ invertible matrix **A**. Determine

$$\frac{\partial A^{-1}}{\partial A}$$
, $\frac{\partial \det(A)}{\partial A}$, $\frac{\partial \operatorname{cof}(A)}{\partial A}$, $\frac{\partial \operatorname{tr}(A^2)}{\partial A}$, $\frac{\partial \operatorname{dev}(A)}{\partial A}$

4. Let

$$\Phi(\boldsymbol{C}) = \frac{c}{2}(\operatorname{tr}(\overline{\boldsymbol{C}}) - 3) - \kappa(J\ln(J) - J + 1),$$

where c and κ constant shear and bulk moduli, respectively. Determine S_{IJ} , C_{IJKL} , P_{iI} , σ_{ij} , A_{iIjJ} .