Homework 4

Due: May 132024

1. Let $\boldsymbol{U}_{\epsilon}=\boldsymbol{u}+\epsilon \boldsymbol{w}$, where $\epsilon \in \mathbb{R}$. Note every member of the trial solution space S can be represented in the form of $\boldsymbol{U}_{\epsilon}$. for some test function $\boldsymbol{w} \in \mathcal{V}$ and $\epsilon \in \mathbb{R}$. Define the potential energy by

$$
I\left(\boldsymbol{U}_{\epsilon}\right)=\frac{1}{2} a\left(\boldsymbol{U}_{\epsilon}, \boldsymbol{U}_{\epsilon}\right)-\left(\boldsymbol{U}_{\epsilon}, \boldsymbol{l}\right)-\left(\boldsymbol{U}_{\epsilon}, \boldsymbol{h}\right)_{\Gamma}
$$

Where $a(\because, \cdot)$ is the bilinear form for linear elasticity. Establish the following results.
a) The potential energy is stationary (i.e., $\left.\left.\left(d I\left(\boldsymbol{U}_{\epsilon}\right) / d \epsilon\right)\right|_{\epsilon=0}=0\right)$ if and only if the variational equation for linear elasticity is satisfied.
b) The potential energy is minimized at \boldsymbol{u}, that is, $I(\boldsymbol{u}) \leq I(\boldsymbol{u}+\epsilon \boldsymbol{w})$ for all $\boldsymbol{w} \in \boldsymbol{v}$ and $\epsilon \in \mathbb{R}$. (Hint: Use part (a) and show that $\left.\left(d^{2} I\left(\boldsymbol{U}_{\epsilon}\right) / d \epsilon^{2}\right)\right|_{\epsilon=0}=a(\boldsymbol{w}, \boldsymbol{w}) \geq$ 0.)
c) The approximate solution overestimates the potential energy, i.e., $I\left(\boldsymbol{u}^{h}\right) \geq I(\boldsymbol{u})$. (Hint: This follows immediately from $\boldsymbol{S}^{h} \subset \boldsymbol{S}$.)
2. Consider the uniform deformation given by the placement mapping

$$
\varphi(X)=\binom{\frac{1}{4}\left(18+4 X_{1}+6 X_{2}\right)}{\frac{1}{4}\left(14+6 X_{2}\right)}
$$

a) Draw the deformed state of the body $\Omega_{X}=(-1,1)^{2}$.
b) Calculate $\boldsymbol{F}, \boldsymbol{F}^{-\mathbf{1}}, \boldsymbol{F}^{\boldsymbol{T}}$, and $\boldsymbol{F}^{\boldsymbol{- T}}$.
c) Consider the vectors $(1,0)^{T}$ and $(0,1)^{T}$ in the initial configuration. Obtain their deformed counterparts in the current configuration.
3. Consider an $n \times n$ invertible matrix \boldsymbol{A}. Determine

$$
\frac{\partial A^{-1}}{\partial A}, \quad \frac{\partial \operatorname{det}(A)}{\partial A}, \quad \frac{\partial \operatorname{cof}(A)}{\partial A}, \quad \frac{\partial \operatorname{tr}\left(A^{2}\right)}{\partial A}, \quad \frac{\partial \operatorname{dev}(A)}{\partial A} .
$$

4. Let

$$
\Phi(\boldsymbol{C})=\frac{c}{2}(\operatorname{tr}(\overline{\boldsymbol{C}})-3)-\kappa(J \ln (J)-J+1)
$$

where c and κ constant shear and bulk moduli, respectively. Determine

$$
S_{I J}, \quad C_{I J K L}, \quad P_{i I}, \quad \sigma_{i j}, \quad A_{i I j J}
$$

