Homework 4

Due: Apr. 10 2023

1. Let $U_{\epsilon} = u + \epsilon w$, where $\epsilon \in \mathbb{R}$. Note every member of the trial solution space S can be represented in the form of U_{ϵ} . for some test function $w \in \mathcal{V}$ and $\epsilon \in \mathbb{R}$. Define the potential energy by

$$I(\boldsymbol{U}_{\epsilon}) = \frac{1}{2}a(\boldsymbol{U}_{\epsilon}, \boldsymbol{U}_{\epsilon}) - (\boldsymbol{U}_{\epsilon}, \boldsymbol{l}) - (\boldsymbol{U}_{\epsilon}, \boldsymbol{h})_{\Gamma},$$

Where $a(\cdot, \cdot)$ is the bilinear form for **linear elasticity**. Establish the following results.

- a) The potential energy is stationary (i.e., $(dI(U_{\epsilon})/d\epsilon)|_{\epsilon=0}=0$) if and only if the variational equation for linear elasticity is satisfied.
- b) The potential energy is minimized at u, that is, $I(u) \le I(u + \epsilon w)$ for all $w \in \mathcal{V}$ and $\epsilon \in \mathbb{R}$. (*Hint*: Use part (a) and show that $(d^2I(U_{\epsilon})/d\epsilon^2)|_{\epsilon=0} = a(w,w) \ge 0$.)
- c) The approximate solution overestimates the potential energy, i.e., $I(u^h) \ge I(u)$. (*Hint*: This follows immediately from $S^h \subset S$.)
- 2. Consider the uniform deformation given by the placement mapping

$$\varphi(X) = \begin{pmatrix} \frac{1}{4}(18 + 4X_1 + 6X_2) \\ \frac{1}{4}(14 + 6X_2) \end{pmatrix}.$$

- a) Draw the deformed state of the body $\Omega_X = (-1,1)^2$.
- b) Calculate F, F^{-1} , F^{T} , and F^{-T} .
- c) Consider the vectors $(1,0)^T$ and $(0,1)^T$ in the initial configuration. Obtain their deformed counterparts in the current configuration.
- 3. Consider an $n \times n$ invertible matrix **A**. Determine

$$\frac{\partial A^{-1}}{\partial A}$$
, $\frac{\partial \det(A)}{\partial A}$, $\frac{\partial \cot(A)}{\partial A}$, $\frac{\partial \operatorname{tr}(A^2)}{\partial A}$, $\frac{\partial \operatorname{dev}(A)}{\partial A}$.

4. Let

$$\Phi(\mathbf{C}) = \frac{c}{2}(\operatorname{tr}(\overline{\mathbf{C}}) - 3) - \kappa(J\ln(J) - J + 1),$$

where c and κ constant shear and bulk moduli, respectively. Determine

$$S_{IJ}$$
, C_{IJKL} , P_{iI} , σ_{ij} , A_{iIjJ} .