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Motivation: Multiphase Flows

Phase: material component.

The Great Wave off Kanagawa Multicomponent flow in a reservoir

parent vessel

=\ extracellular matrix
21\ microvasculature
[ interstitial fluid
tumour © living wmour cell
@ necrotic tumour cell
©  healthy cells

N endothelial cells

« nutrient, cytokine, etc.

Tumor growth Viscous fingering

D. Richter and F. Vleron, Ocean spray: An outsized influence on weather and climate, Physics Today, 69,
11, 34 (2016).

ICES Tumor Modeling Group, Toward Predictive Multiscale Modeling of Vascular Tumor Growth:
Computational and Experimental Oncology for Tumor Prediction, ICES Report 2015.



Motivation: Multiphase Flows

Phase: state of matter.

cavitating flow

_ 1Dp _10pDp  19p D8
p—p(p,9)=>th " pOp Dt +p89 Dt
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Motivation: Boiling Models

g o Q. O ©
f b ° 0 ° 2 \le O O ?/S/\Q/
Y rrrrrrr T 5 oL 7
Film boiling

Nucleate boiling e bubbles are generated from an
unstable vapor film

7

e bubbles are released from discrete

sites of the heated surface e dangerous for the solid surface

e amenable to analysis:

o efficient in heat transfer m level-set method by V.K. Dhir's

e very few numerical studies:

group,
m level-set method by V.K. Dhir's m front-tracking method by G.
group Tryggvason's group,
X Dhir’s approach requires empirical - \e/toa'T e 237 S sl
knowledge .
4 % all the models start with a

pre-existing thin vapor film

V.K. Dhir, Boiling heat transfer. Annual Review of Fluid Mechanics, 1998.
R. Lakkaraju, et al. Heat transport in bubbling turbulent convection. PNAS, 2013. 5/44



Motivation: Boiling Models
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Film boiling

Nucleate boiling e bubbles are generated from an
unstable vapor film
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e bubbles are released from discrete d for th lid surf
sites of the heated surface - CEUISEGLE Kar i il SRiiEe

e amenable to analysis:

o efficient in heat transfer m level-set method by V.K. Dhir's

e very few numerical studies:

group,
m level-set method by V.K. Dhir's m front-tracking method by G.
group Tryggvason's group,
X Dhir’s approach requires empirical - \e/toa'T e 237 S sl
knowledge .
4 % all the models start with a

pre-existing thin vapor film

“When a bubble reaches the top cold plate, it is removed from the calculation to
model condensation and a new bubble is introduced at a random position on the
bottom hot plate [...]"

V.K. Dhir, Boiling heat transfer. Annual Review of Fluid Mechanics, 1998.
R. Lakkaraju, et al. Heat transport in bubbling turbulent convection. PNAS, 2013.



Motivation: Diffuse-interface models

e Classical multiphase solvers (e.g. VOF, Level-set methods, Front tracking
method, etc.) are based on geometrical description of existing interfaces.

D.M. Anderson, et al. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech., 1998. o
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length scale of the phenomena being examined.”
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Motivation: Diffuse-interface models

e Classical multiphase solvers (e.g. VOF, Level-set methods, Front tracking
method, etc.) are based on geometrical description of existing interfaces.
o Interfacial physics are described by phenomenological relations, such as the
Young-Laplace law.
Ap = Ak — oo as the bubble radius goes to 0.
“Classical models break down when the interfacial thickness is comparable to the
length scale of the phenomena being examined.”

van der Waals  Korteweg Cahn-Hilliard Interstitial
theory stress equation Model H working  Microforce
1894 1901 1977 1985 1996

b/

D.M. Anderson, et al. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech., 1998.
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Motivation: Numerical Analysis

e Nonlinear stability

m Entropy stable fully discrete schemes utilizing
the convexity of the mathematical entropy
functions have been developed for the
compressible Euler and Navier-Stokes
equations in the 1980s.

m For phase-field models, convexity is lost.
m An appropriate notion of nonlinear stability
(i.e., entropy) needs to be developed for

phase-field models and new algorithms are
needed.

o Isogeometric analysis
m Exact geometric representation.

m k-refinement.

m Robustness.

T.J.R. Hughes, et al., A new finite element formulation for computational fluid dynamics: I. Symmetric
forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics.
CMAME, 1986.

T.J.R. Hughes, et al., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh
refinement. CMAME, 2005.
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Continuum Theory: Balance Laws

“If someone points out to you that your pet theory of the
universe is in disagreement with Maxwell’s equations — then
so much the worse for Maxwell’s equations. If it is found to
be contradicted by observation — well, these experimentalists
do bungle things sometimes. But if your theory is found to
be against the second law of thermodynamics | can give you
no hope; there is nothing for it but to collapse in deepest
humiliation.”

— Sir Arthur S. Eddington, 1915

Modeling techniques

e Balance laws
e Microforce balance equations
o Truesdell equipresence principle

e Coleman-Noll approach

B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity,
ARMA, 1963.

J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical
Formulation, and Boiling Simulations, CMAME, 2015.



Continuum Theory: Balance Laws

e Conservation of mass

= | pdvie=o0.
dt |,
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Continuum Theory: Balance Laws

e Conservation of mass

= | pdvie=o0.
dt |,

e Balance of components

mass fraction mass flux mass source

SN =~ PN
i/ p Ca dez/ - h. -ndAx + me dVx,
dt Q Cloh Q

fora=1,--- N—-1.

10 /44



Continuum Theory: Balance Laws

Conservation of mass

= | pdvie=o0.
dt |,

Balance of linear momentum

% pud / odAx —|—/ pbdVy,
t

= Tn.

Balance of angular momentum

i x X pudV: :/ xxadAer/xprde.
dt Q4 o Q4

44



Continuum Theory: Balance Laws

“ fundamental physical laws involving energy should
account for the working associated with each opera-
tive kinematical process [...] and it seems plausible
that there should be ‘microforces’ whose working ac-

companies changes in p.”

— M.E. Gurtin, 19964

Fundamental Postulate
There exists a set of microscopic forces that accompanies the evolution of each phase-

field order parameter.

Phase-field order parameter for the transition of the state of matter = p.

M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.

Physica D, 1996.
11/44



Continuum Theory: Balance Laws

e Balance of microforces associated with p

/ é-ndAx—i—/ deer/ [dVy = 0.
o0 Q Q

o: internal microforce, [: external microforce.

&: microstress,

M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.
Physica D, 1996.



Continuum Theory: Balance Laws

e Balance of microforces associated with p

/ E-ndAx—i—/ dex+/ [dVy = 0.
o0 Q Q

&: microstress, o: internal microforce, [: external microforce.

e Balance of energy

kinetic energy .
p J A internal energy

P 2 =~
— EdVy := — = dVx
at ), ° af, ozt T
t t

d d
= Tu+ —p€ —q | -ndAx + pb-u+I[—p+ prdVi.
. dt o dt

M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.

Physica D, 1996.



Continuum Theory: Balance Laws

e Balance of microforces associated with p

/ E-ndAx—i—/ dex+/ [dVy = 0.
o0 Q Q

&: microstress, o: internal microforce, [: external microforce.

e Balance of energy

kinetic ener .
& internal energy

— EdVy = — Eluf? o
i |, pEAV; i |, 2|u\ + pL Vv
t t

= ’I‘u—l—ipﬁ—q -ndAx + pb~u+[ip+prdvx.
o0 dt o dt
t t

e The second law of thermodynamics

/dex ::i/ pstx+/ L Ooae— | 2Zave>o.
o, i J,, 2 0 7

Q4

M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.

Physica D, 1996.



Continuum Theory: Balance Laws

Conservation of mass % +pV-u=0,
Balance of linear momentum p% =V -T + pb,
Balance of angular momentum T =TT,

Balance of microforce V-&+ o0+ 1=0,

Balance of energy p‘fi—}f =V- (’I‘u D %g — q> +pb-u+ [% + pr,

The second law D :=p% + V- (%) - & >0

B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity.
Archive for Rational Mechanics and Analysis, 1968.

J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical
Formulation, and Boiling Simulations, CMAME 2015.



Continuum Theory: Balance Laws

Conservation of mass % +pV-u=0,
Balance of linear momentum p% =V - -T+ pb,
Balance of angular momentum T =TT,

Balance of microforce V-&+ o0+ 1=0,

Balance of energy p‘fi—}f =V- (’I‘u D %g — q> +pb-u+ [% + pr,

The second law D :=p% + V- (%) - & >0

Truesdell's principle of equipresence J + Coleman-Noll approach J

U

B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity.
Archive for Rational Mechanics and Analysis, 1968.

J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical
Formulation, and Boiling Simulations, CMAME 2015.
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Continuum Theory: Constitutive Relations

Constitutive relations
The constitutive relations are represented in terms of the Helmholtz free energy .

e Microstresses

§= p—aql
9(Vp)
o Heat flux q=—kV8.

o Cauchy stress

S ov oV
T =2iL" — (vp® a5 e @Y )

(9\:[/ 28‘11 2
+<pV <p8(Vp)> P 8p+p[+BpV u)I.

o Entropy density per unit mass

s=—0V/06.

14/



Continuum Theory: Dissipation Inequalities

Theorem (Dissipation for isolated systems)

Given the above constitutive relations, the dissipation D takes the following form:

9—12n|v0|2 > 0.

ds A\ _por_p ez lp oo 2
pE+V (9) L= D=L 4 2B (Vo w) +

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,

Proceedings of the Royal Society of London 1544



Continuum Theory: Dissipation Inequalities

Theorem (Dissipation for isolated systems)

Given the above constitutive relations, the dissipation D takes the following form:

1

ds Cl) pr 20 a2 1,09 2 2
— . _— _—— = _— - - e > .
pE+V (9 L =D =LY 4 2B (V) + 5wlVO >0
Gibbs triangle Free energy for a three-component system

The perfect gas model

The van der Waals liquid-vapor two-phase fluid model
e The Navier-Stokes-Cahn-Hilliard multicomponent fluid model

o The Navier-Stokes-Cahn-Hilliard-Korteweg multicomponent multiphase fluid
model

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,

Proceedings of the Royal Society of London 15 s
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Continuum Theory: The van der Waals Fluid Model

Thermodynamic potential

U(p,0,Vp) = Yie(p,0) + 2—)\p|Vp|2, <regularization

Uioe(p,0) = —ap + ROlog (ﬁ) — Cy0log (90 ) + C,0.
- ref

/ Non-convex

vdw

loc

Free energy pV¥

vdw

vdw
P A

p

R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

r
1
1
1
1
1
1
1
1
i
1
Common tangent line
1
1
1
1

Density p
J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation

of density. Z. Physik. Chem, 1894.
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The Navier-Stokes-Korteweg equations: the thermodynamic pressure

pp.0) = =0 2
)
27T1—p
i i i i 0.0 i i i i i i i i
[—van der Waals model| 7 J=van der Waals model
0.5-"ideal gas model |+ ideal gas model
O Water © Water
o Carbon dioxide 0.05-a Carbon dioxide <« [
+ Methane + Methane
0414 Propane < Propane <
P Helium 0.04- > Helium q F
B =
034 e <
=1 iF £ 50,034 < b+
2 2 “qn B
%027 - 4 « o8
o R A 0.02 L
019 Gas Gas (detail)
..... 0.014 F
0§
; ; 0 T T T T T T T T
0 0.2 0.4 0.6 0.8 1 0 0.02 0.04 006 008 01 012 0.14 0.16
Density p/b

Density p/b

Comparison of the van der Waals equation of state with real fluids at 6 = 0.950;:.

NIST, Thermophysical Properties of Fluid Systems. [Online; accessed 11-February-2016].
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Thermodynamically Consistent Algorithm

Non-physical shock Physical shock

\/

Weak solutions of the conservation law

u=1

The second law of thermodynamics

L.C. Evans, Partial Differential Equations.



Thermodynamically Consistent Algorithm: Spatial Discretization

Given the conservation variables U = {p; pu”; pE}”, and the mathermatical entropy
function H := —ps, the entropy variables are defined as V = 0H/9U.

A. Harten, On the symmetric form of systems of conservation laws with entropy. JCP, 1983.
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test function
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1)

Solve the equations in terms of V,
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Thermodynamically Consistent Algorithm: Spatial Discretization

Given the conservation variables U = {p; pu”; pE}”, and the mathermatical entropy
function H := —ps, the entropy variables are defined as V = 0H/9U.

\% - ( Balance Equations ) dx =0 < Clausius-Duhem inequality.
~—

test function

V lives in the test function spaces.

1)

Solve the equations in terms of V,
if there is a well-defined algebraic change-of-variables between U and V.

T

There is a well-defined algebraic change-of-variables for ideal gas.

T

Aerodynamists are lucky.

For the Navier-Stokes-Korteweg equations (in fact, all phase-field models), the
mapping from U to V is not invertible!

A. Harten, On the symmetric form of systems of conservation laws with entropy. JCP, 1983.

21 /44



Thermodynamically Consistent Algorithm: Spatial Discretization

8 Op 2

p(p,0) = wi—p, *

1 1 1 1
J—van der Waals mode] ?
0.5 *+ideal gas model y -
Jo Water 5
4o Carbon dioxide
1+ Methane

1< Propane

NIST, Thermophysical Properties of Fluid Systems. [Online; accessed 11-February-2016].
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Thermodynamically Consistent Algorithm: Spatial Discretization

Mathematical entropy function

— e 8 p_\__ 8
H:= ps—27p10g(1_p> 27(1_7)plog(9),

0 =0(p, pu, pE, Vp).

oH
V= 5O = [Va; Va; Va; Va; V5]
L, 8 QY ___8 Y

Vi[dwn] =3 ( 2p + 27<9log; <1 3 p) 570y = 1)010g(0) + 37y = 1)9

860 |u|2

W o+ e W ev” Véu,
VQ[(;'UQ] :%61)2, V3[5U3] = %5’!)3, [(51)4] —(51)4,
1

V5[6U5] = — 561}5.

J. Liu, et al.,Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent

Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg
Equations. JCP, 2013.
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Thermodynamically Consistent Algorithm: Spatial Discretization

Stability of the weak formulation

The solutions of the semi-discrete finite element formulation based on the functional
entropy variables V satisfy

aH(Phagh) h phy. h qh hr
/Q T+V~(H(p,9 )u)—V' +0—h dx

|2
—/ lhTh:Vuhdx—/ _/ithZ | dx.
ot o 0

The spatial discretization is stable. Now we need to design a time-stepping algorithm
that preserves this stability.

J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical
Formulation, and Boiling Simulations, CMAME, 2015.
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Thermodynamically Consistent Algorithm: Temporal Discretization

e Runge-Kutta : no stability proof for nonlinear problems;
o Generalized-a method : no stability proof for nonlinear problems;

e Space-time formulation : stability requires convexity of the energy.

1. D.J. Eyre, An unconditionally stable one-step scheme for gradient systems. published on line.

2. H. Gomez and T.J.R. Hughes, Provably Unconditionally Stable, Second-order Time-accurate, Mixed
Variational Methods for Phase-field Models. JCP, 2011.

3. J. Liu, et al. Functional Entropy Variables: A New Methodology for Deriving Thermodynamically
Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal
Navier-Stokes-Korteweg Equations. JCP 2013.

4. G. Tierra and F. Guillen-Gonzalez. Numerical Methods for Solving the Cahn-Hilliard Equation and Its
Applicability to Related Energy-Based Models. Archives of Computational Methods in Engineering, 2015.

5. J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical
Formulation, and Boiling Simulations, CMAME, 2015. 26 /44



Thermodynamically Consistent Algorithm: Temporal Discretization

e Runge-Kutta : no stability proof for nonlinear problems;
o Generalized-a method : no stability proof for nonlinear problems;

e Space-time formulation : stability requires convexity of the energy.
A suite of new time integration schemes is developed.

e Rectangular quadrature rules''® < Eyre's method;
e Perturbed trapezoidal rules®> < Gomez-Hughes method:;

e Perturbed mid-point rules®: Second-order accurate, less numerical dissipation;
o .- .4’5
1. D.J. Eyre, An unconditionally stable one-step scheme for gradient systems. published on line.

2. H. Gomez and T.J.R. Hughes, Provably Unconditionally Stable, Second-order Time-accurate, Mixed
Variational Methods for Phase-field Models. JCP, 2011.

3. J. Liu, et al. Functional Entropy Variables: A New Methodology for Deriving Thermodynamically
Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal
Navier-Stokes-Korteweg Equations. JCP 2013.

4. G. Tierra and F. Guillen-Gonzalez. Numerical Methods for Solving the Cahn-Hilliard Equation and Its
Applicability to Related Energy-Based Models. Archives of Computational Methods in Engineering, 2015.

5. J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical
Formulation, and Boiling Simulations, CMAME, 2015. 26 /44



Thermodynamically Consistent Algorithm: Temporal Discretization

1. The fully discrete scheme is unconditionally entropy-stable in the following sense.

/ <H(p’:;+1,0ﬁ+1> — H(ph,6)
Q

h h h
AL +V- (H(pn+%’0n+%)un+%>

-V (q2+%/92+%) +PZ+;T/GZ+é>dX

B2
1 A A K|v9n+%|
:7/9’177'%_% :Vun+%dxf —5dx
Q n+% Q oh .
nt3

physical dissipation
1 [[ﬂm]zl 637/10(: h h HG}LH4 83
_ 0 dx < 0.
/Qe’ulAtn< 2 g P fny) — o g Py frve) | dx <0
nt3

numerical dissipation

I
(1

2. The local truncation error in time ©(t) may be bounded by |©(t,

<
all t, € [0, T], where K is a constant independent of At,. and 15 1;

KA 215 for
18 1) 2
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Isogeometric Analysis and Software Design

ACMake

METIS

PERIGEE: an object-oriented C++ code for parallel FEM/IGA
multiscale multiphysics simulations:

Cahn-Hilliard equation;
Navier-Stokes-Korteweg equation;
Incompressible Navier-Stokes equation;
Fluid-structure interaction (ongoing);
etc.

TetGen
PETSc

VrK

Preprocessor Processor

ll’ ParaView

v

J. Liu, Thermodynamically Consistent Modeling and Simulation of Multiphase Flows. Ph.D. Dissertation,
The University of Texas at Austin, 2014.

Postprocessor

29 /44



Isogeometric Analysis and Software Design

g
Stampede Maverick
A 10 PFLOPS (PF) Dell Linux Cluster at TACC; An HP/NVIDIA Interactive Visualization
The 10th fastest supercomputer in the world. and Data Analytics System.

Top500 Supercomputer Sites, www.top500.org.



Isogeometric Analysis and Software Design

Speedup ratio

10

| Ll Lol I L1

|

—m— 1.231M DoFs on Stamped
, —0—13.55M DoFs on Stampedd

“ ——96.14M DoFs on Stampedq[—

‘ . - - -Ideal speedup curve

10°

J. Liu, Thermodynamically Consistent Modeling and Simulation of Multiphase Flows. Ph.D. Dissertation,
The University of Texas at Austin, 2014.

T T T

10

1

10

Number of processors

2

VT T

10
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Applications: Nucleate Boiling

Vp-n=0 u,=0 0=6_(x)=0.775+606(x)
y

Vp-n=0 Vp-n=0
u=0—— «— u,=0
Vo-n=0 Vo-n=0

t

Vp-n=0 u,=0 6=6,(x)=0.950+6,0(x)

2

Q= (0,1) x (0,0.5) and b = (0; —0.025)7

= Cupand k = Cgp

C,=1.15x107* C, = 1.725 x 107°, We = 8.401 x 10°, and v = 1.333
2048 x 1024 uniform quadratic NURBS, At = 5.0 x 107%, and 7 = 100.0
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Applications: Nucleate Boiling

t=1.25

t=18.75 t=62.5
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Applications: Nucleate Boiling
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movie_boiling21_rho.mp4
Media File (video/mp4)


Applications: Film Boiling

Vp-n=0 u,=0 6=6_(x)=0.775+6,60(x)

Vp-n=0 Vp-n=0
u=0—— «— u,=0
Vé-n=0 Vo-n=0

t

Vp-n=0 u,=0 6=06,(x)=0.950+6,0(x)

Q= (0,1) x (0,0.5) and b = (0; —0.025)7

it = Cupand kK = Cyxp

C, =4.60 x 107, C,, = 1.725 x 107°, We = 8.401 x 10°, and v = 1.333
2048 x 1024 uniform quadratic NURBS, At = 5.0 x 10~4, and T = 500.0
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Applications: Film Boiling

t=0.0 t=100.0

t=200.0 t=225.0
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Applications: Film Boiling
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movie_boiling23_rho.mp4
Media File (video/mp4)


Applications: Three-dimensional boiling

Density

0.33 037

6=06.(x)=0.775+0,6(x)

o
Lo

Q=1(0,1) x (0,0.5) x (0,0.25)

= Cupand k = Ckp

C, =1.289 x 107, C,, = 7.732 x 1075, We = 6.533 x 10°, and v = 1.333
600 x 300 x 150 uniform quadratic NURBS and At = 2.0 x 1073

Vp-n =0 and slip boundary condition for u on 92



Applications: Three-dimensional boiling

t=8.0 t=12.0
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Applications: Three-dimensional Boiling
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boiling3d_rho.mp4
Media File (video/mp4)


Applications: Three-dimensional Boiling
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boiling3d_tem.mp4
Media File (video/mp4)
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Conclusions and Future Work

v A thermodynamically consistent modeling framework for multiphase flows is
developed based on the concept of microforces.

m The interstitial working flux of Dunn and Serrin is derived from fundamental
hypothesis.
v The notion of entropy variables is generalized to the functional setting and is
applied to the Navier-Stokes-Korteweg equations to construct an entropy-stable
spatial discretization.

v A second-order accurate, unconditionally entropy-stable, time-stepping method is
developed based on special quadrature rules.

m There are no convexity requirements.
v' The formulation constitutes a new approach to simulate boiling.

m Two-dimensional nucleate boiling
m Two-dimensional film boiling
m Three-dimensional boiling

R. Lakkaraju, et al. Heat transport in bubbling turbulent convection. PNAS, 2013.
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v A thermodynamically consistent modeling framework for multiphase flows is
developed based on the concept of microforces.

m The interstitial working flux of Dunn and Serrin is derived from fundamental
hypothesis.
v The notion of entropy variables is generalized to the functional setting and is
applied to the Navier-Stokes-Korteweg equations to construct an entropy-stable
spatial discretization.

v A second-order accurate, unconditionally entropy-stable, time-stepping method is
developed based on special quadrature rules.

m There are no convexity requirements.
v' The formulation constitutes a new approach to simulate boiling.

m Two-dimensional nucleate boiling
m Two-dimensional film boiling
m Three-dimensional boiling

“When a bubble reaches the top cold plate, it is removed from the calculation to
model condensation and a new bubble is introduced at a random position on the
bottom hot plate [...]"

R. Lakkaraju, et al. Heat transport in bubbling turbulent convection. PNAS, 2013.
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