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Motivation: Multiphase Flows

Phase: material component.

The Great Wave off Kanagawa Multicomponent flow in a reservoir

Tumor growth Viscous fingering
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D. Richter and F. Veron, Ocean spray: An outsized influence on weather and climate, Physics Today, 69,
11, 34 (2016).
ICES Tumor Modeling Group, Toward Predictive Multiscale Modeling of Vascular Tumor Growth:
Computational and Experimental Oncology for Tumor Prediction, ICES Report 2015.



Motivation: Multiphase Flows

Phase: state of matter.

boiling heat transfer

cavitating flow

ρ = ρ(p, θ)⇒ 1
ρ

Dρ
Dt = 1

ρ

∂ρ

∂p
Dp
Dt + 1

ρ

∂ρ

∂θ

Dθ
Dt

4 / 44


exp_boiling_1.mp4
Media File (video/mp4)



Motivation: Boiling Models
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BOILING HEAT TRANSFER 367

Figure 1 Typical boiling curve, showing qualitatively the dependence of the wall heat flux, q,
on the wall superheat, 1T, defined as the difference between the wall temperature, Tw, and the
saturation temperature, Tsat, of the liquid. Schematic drawings show the boiling process in regions
I–V. These regions and the transition points A–E are discussed in the text.

Themaximumor critical heat flux, qmax, sets the upper limit of fully developed
nucleate boiling for safe operation of equipment. After maximum heat flux is
reached, most of the surface is rapidly covered with vapor. The surface is nearly
insulated, and the surface temperature rises very rapidly. When the rate of heat
input is controlled, the heater surface passes quickly through regions IV and
V (see Figure 1) and stabilizes at point E. If the temperature at E exceeds the
melting temperature of the heater material, the heater will fail (burn out). The
curve ED (region V) represents stable film boiling, and the system can be made
to follow this curve by reducing the heat flux.
In stable film boiling, the surface is covered with vapor film, and liquid

does not contact the solid. On a horizontal surface the vapor release pattern is
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Nucleate boiling
• bubbles are released from discrete

sites of the heated surface
• efficient in heat transfer
• very few numerical studies:

level-set method by V.K. Dhir’s
group

× Dhir’s approach requires empirical
knowledge

Film boiling
• bubbles are generated from an

unstable vapor film
• dangerous for the solid surface
• amenable to analysis:

level-set method by V.K. Dhir’s
group,
front-tracking method by G.
Tryggvason’s group,
VOF approach by S.W. Welch
et al.

× all the models start with a
pre-existing thin vapor film

“When a bubble reaches the top cold plate, it is removed from the calculation to
model condensation and a new bubble is introduced at a random position on the
bottom hot plate [...]”
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V.K. Dhir, Boiling heat transfer. Annual Review of Fluid Mechanics, 1998.
R. Lakkaraju, et al. Heat transport in bubbling turbulent convection. PNAS, 2013.
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Motivation: Diffuse-interface models
• Classical multiphase solvers (e.g. VOF, Level-set methods, Front tracking

method, etc.) are based on geometrical description of existing interfaces.

• Interfacial physics are described by phenomenological relations, such as the
Young-Laplace law.

∆p = γ̃κ̃→∞ as the bubble radius goes to 0.
“Classical models break down when the interfacial thickness is comparable to the
length scale of the phenomena being examined.”

1894

van der Waals
theory

1901

Korteweg
stress

1957

Cahn-Hilliard
equation

1977

Model H

1985

Interstitial
working

1996

Microforce

6 / 44D.M. Anderson, et al. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech., 1998.
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Motivation: Numerical Analysis

• Nonlinear stability
Entropy stable fully discrete schemes utilizing
the convexity of the mathematical entropy
functions have been developed for the
compressible Euler and Navier-Stokes
equations in the 1980s.

For phase-field models, convexity is lost.

An appropriate notion of nonlinear stability
(i.e., entropy) needs to be developed for
phase-field models and new algorithms are
needed.

• Isogeometric analysis
Exact geometric representation.

k-refinement.

Robustness.
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T.J.R. Hughes, et al., A new finite element formulation for computational fluid dynamics: I. Symmetric
forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics.
CMAME, 1986.
T.J.R. Hughes, et al., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh
refinement. CMAME, 2005.
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Continuum Theory: Balance Laws

“If someone points out to you that your pet theory of the
universe is in disagreement with Maxwell’s equations – then
so much the worse for Maxwell’s equations. If it is found to
be contradicted by observation – well, these experimentalists
do bungle things sometimes. But if your theory is found to
be against the second law of thermodynamics I can give you
no hope; there is nothing for it but to collapse in deepest
humiliation.”

— Sir Arthur S. Eddington, 1915

Modeling techniques
• Balance laws
• Microforce balance equations
• Truesdell equipresence principle
• Coleman-Noll approach

9 / 44

B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity,
ARMA, 1963.
J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical
Formulation, and Boiling Simulations, CMAME, 2015.



Continuum Theory: Balance Laws

• Conservation of mass

d
dt

∫
Ωt

ρdVx = 0.
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dt

∫
Ωt

ρdVx = 0.

• Balance of components

d
dt

∫
Ωt

ρ

mass fraction︷︸︸︷
cα dVx =

∫
∂Ωt

−
mass flux︷︸︸︷

hα ·ndAx +
∫

Ωt

mass source︷︸︸︷
mα dVx,

for α = 1, · · · ,N− 1.
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• Balance of linear momentum

d
dt

∫
Ωt

ρudVx =
∫
∂Ωt

σdAx +
∫

Ωt

ρbdVx,

σ = Tn.

• Balance of angular momentum

d
dt

∫
Ωt

x× ρudVx =
∫
∂Ωt

x× σdAx +
∫

Ωt

x× ρbdVx.
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Continuum Theory: Balance Laws

“ fundamental physical laws involving energy should
account for the working associated with each opera-
tive kinematical process [...] and it seems plausible
that there should be ‘microforces’ whose working ac-
companies changes in ρ.”

— M.E. Gurtin, 1996

Fundamental Postulate
There exists a set of microscopic forces that accompanies the evolution of each phase-
field order parameter.

Phase-field order parameter for the transition of the state of matter ⇒ ρ.

11 / 44

M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.
Physica D, 1996.



Continuum Theory: Balance Laws

• Balance of microforces associated with ρ∫
∂Ωt

ξ · ndAx +
∫

Ωt

%dVx +
∫

Ωt

ldVx = 0.

ξ: microstress, %: internal microforce, l: external microforce.

• Balance of energy

d
dt

∫
Ωt

ρEdVx := d
dt

∫
Ωt

kinetic energy︷ ︸︸ ︷
ρ

2 |u|
2 +

internal energy︷︸︸︷
ρι dVx

=
∫
∂Ωt

(
Tu + d

dt ρξ − q

)
· ndAx +

∫
Ωt

ρb · u + l
d
dt ρ+ ρrdVx.

• The second law of thermodynamics∫
Ωt

DdVx := d
dt

∫
Ωt

ρsdVx +
∫
∂Ωt

q · n
θ

dAx −
∫

Ωt

ρr
θ

dVx ≥ 0.
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M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.
Physica D, 1996.
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Continuum Theory: Balance Laws



Conservation of mass dρ
dt + ρ∇ · u = 0,

Balance of linear momentum ρ du
dt = ∇ ·T + ρb,

Balance of angular momentum T = TT ,

Balance of microforce ∇ · ξ + %+ l = 0,

Balance of energy ρ dE
dt = ∇ ·

(
Tu + dρ

dt ξ − q
)

+ ρb · u + l dρ
dt + ρr ,

The second law D := ρ ds
dt +∇ ·

(q
θ

)
− ρr

θ
≥ 0.

Truesdell’s principle of equipresence + Coleman-Noll approach

⇓
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B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity.
Archive for Rational Mechanics and Analysis, 1968.
J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical
Formulation, and Boiling Simulations, CMAME 2015.
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Continuum Theory: Constitutive Relations

Constitutive relations
The constitutive relations are represented in terms of the Helmholtz free energy Ψ.

• Microstresses

ξ = ρ
∂Ψ

∂ (∇ρ) .

• Heat flux q = −κ∇θ.
• Cauchy stress

T =2µ̄Ld − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ) + ∂Ψ
∂ (∇ρ) ⊗∇ρ

)
+

(
ρ∇ ·

(
ρ

∂Ψ
∂ (∇ρ)

)
− ρ2 ∂Ψ

∂ρ
+ ρl + Bρ2∇ · u

)
I.

• Entropy density per unit mass

s = −∂Ψ/∂θ.
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Continuum Theory: Dissipation Inequalities

Theorem (Dissipation for isolated systems)
Given the above constitutive relations, the dissipation D takes the following form:

ρ
ds
dt +∇ ·

(q
θ

)
− ρr

θ
= D =2µ̄

θ
|Ld |2 + 1

θ
Bρ2 (∇ · u)2 + 1

θ2 κ|∇θ|
2 ≥ 0.

(0.5,0.3,0.2)

50%

30%

20%

20% 40% 60% 80%

20%

40%

60%

80% 80%

60%

40%

20%

A 100% B 100%

C 100%

Gibbs triangle Free energy for a three-component system

• The perfect gas model
• The van der Waals liquid-vapor two-phase fluid model
• The Navier-Stokes-Cahn-Hilliard multicomponent fluid model
• The Navier-Stokes-Cahn-Hilliard-Korteweg multicomponent multiphase fluid

model
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J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,
Proceedings of the Royal Society of London
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Continuum Theory: The van der Waals Fluid Model
Thermodynamic potential

Ψ(ρ, θ,∇ρ) = Ψloc(ρ, θ) + λ

2ρ |∇ρ|
2,⇐regularization

Ψloc(ρ, θ) = −aρ+ Rθ log
(

ρ

b − ρ

)
− Cvθ log

(
θ

θref

)
+ Cvθ.

ρ
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lρ
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v ρ
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  tangent	
  line	
  

17 / 44

J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation
of density. Z. Physik. Chem, 1894.



The Navier-Stokes-Korteweg equations: the thermodynamic pressure

p(ρ, θ) = 8
27

θρ

1− ρ − ρ
2.
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Comparison of the van der Waals equation of state with real fluids at θ = 0.95θcrit .
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NIST, Thermophysical Properties of Fluid Systems. [Online; accessed 11-February-2016].
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Thermodynamically Consistent Algorithm
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Thermodynamically Consistent Algorithm: Spatial Discretization
Given the conservation variables U = {ρ; ρuT ; ρE}T , and the mathermatical entropy
function H := −ρs, the entropy variables are defined as V = ∂H/∂U.

∫
Ω

V︸︷︷︸
test function

· ( Balance Equations ) dx = 0 ⇔ Clausius-Duhem inequality.

m
V lives in the test function spaces.

⇑
Solve the equations in terms of V,

if there is a well-defined algebraic change-of-variables between U and V.
⇑

There is a well-defined algebraic change-of-variables for ideal gas.

⇑
Aerodynamists are lucky.

For the Navier-Stokes-Korteweg equations (in fact, all phase-field models), the
mapping from U to V is not invertible!

21 / 44

A. Harten, On the symmetric form of systems of conservation laws with entropy. JCP, 1983.
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Thermodynamically Consistent Algorithm: Spatial Discretization

p(ρ, θ) = 8
27

θρ

1− ρ − ρ
2.
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Thermodynamically Consistent Algorithm: Spatial Discretization

Mathematical entropy function

H :=− ρs = 8
27ρ log

(
ρ

1− ρ

)
− 8

27(1− γ)ρ log (θ) ,

θ =θ(ρ, ρu, ρE ,∇ρ).

V := δH
δU = [V1; V2; V3; V4; V5]T .

V1[δv1] =1
θ

(
−2ρ+ 8

27θ log
(

ρ

1− ρ

)
− 8

27(γ − 1)θ log (θ) + 8
27(γ − 1)θ

+ 8θ
27(1− ρ) −

|u|2

2

)
δv1 + 1

We
1
θ
∇ρ · ∇δv1,

V2[δv2] =u1

θ
δv2, V3[δv3] = u2

θ
δv3, V4[δv4] = u3

θ
δv4,

V5[δv5] =− 1
θ
δv5.
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J. Liu, et al.,Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent
Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg
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Thermodynamically Consistent Algorithm: Spatial Discretization

Stability of the weak formulation
The solutions of the semi-discrete finite element formulation based on the functional
entropy variables V satisfy∫

Ω

(
∂H (ρh , θh)

∂t +∇ ·
(
H (ρh , θh)uh)−∇ ·(qh

θh

)
+ ρhr

θh

)
dx

= −
∫

Ω

1
θh τ h : ∇uhdx−

∫
Ω

κ|∇θh |2

θ2 dx.

The spatial discretization is stable. Now we need to design a time-stepping algorithm
that preserves this stability.
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Thermodynamically Consistent Algorithm: Temporal Discretization
• Runge-Kutta : no stability proof for nonlinear problems;

• Generalized-α method : no stability proof for nonlinear problems;

• Space-time formulation : stability requires convexity of the energy.

A suite of new time integration schemes is developed.
• Rectangular quadrature rules1,3 ⇔ Eyre’s method;

• Perturbed trapezoidal rules2 ⇔ Gomez-Hughes method;

• Perturbed mid-point rules3: Second-order accurate, less numerical dissipation;

• · · ·4,5

26 / 44

1. D.J. Eyre, An unconditionally stable one-step scheme for gradient systems. published on line.
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Variational Methods for Phase-field Models. JCP, 2011.
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Thermodynamically Consistent Algorithm: Temporal Discretization
Discrete entropy dissipation and time accuracy
1. The fully discrete scheme is unconditionally entropy-stable in the following sense.∫

Ω

(
H (ρh

n+1, θ
h
n+1)−H (ρh

n , θ
h
n)

∆tn
+∇ ·

(
H (ρh

n+ 1
2
, θh

n+ 1
2
)uh

n+ 1
2

)
−∇ ·

(
qh

n+ 1
2
/θh

n+ 1
2

)
+ ρh

n+ 1
2

r/θh
n+ 1

2

)
dx

=−
∫

Ω

1
θh

n+ 1
2

τ h
n+ 1

2
: ∇uh

n+ 1
2

dx−
∫

Ω

κ|∇θh
n+ 1

2
|2(

θh
n+ 1

2

)2 dx

︸ ︷︷ ︸
physical dissipation

−
∫

Ω

1
θh

n+ 1
2
∆tn

(
Jρh

nK4

24
∂3νloc

∂ρ3 (ρh
n+ξ1 , θ

h
n+ 1

2
)− Jθh

nK4

24
∂3H
∂θ3 (ρh

n+ 1
2
, θh

n+ξ2 )
)

dx︸ ︷︷ ︸
numerical dissipation

≤ 0.

2. The local truncation error in time Θ(t) may be bounded by |Θ(tn)| ≤ K∆t2
n15 for

all tn ∈ [0,T ], where K is a constant independent of ∆tn . and 15 = (1; 1; 1; 1; 1)T .
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Isogeometric Analysis and Software Design

PERIGEE:	
  an	
  object-­‐oriented	
  C++	
  code	
  for	
  parallel	
  FEM/IGA	
  
mul?scale	
  mul?physics	
  simula?ons:	
  
•  Cahn-­‐Hilliard	
  equa?on;	
  
•  Navier-­‐Stokes-­‐Korteweg	
  equa?on;	
  
•  Incompressible	
  Navier-­‐Stokes	
  equa?on;	
  
•  Fluid-­‐structure	
  interac?on	
  (ongoing);	
  
•  etc.	
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Isogeometric Analysis and Software Design

Stampede	
  
	
  A	
  10	
  PFLOPS	
  (PF)	
  Dell	
  Linux	
  Cluster	
  at	
  TACC;	
  
The	
  10th	
  fastest	
  supercomputer	
  in	
  the	
  world.	
  

Maverick	
  
An	
  HP/NVIDIA	
  InteracKve	
  VisualizaKon	
  

	
  and	
  Data	
  AnalyKcs	
  System.	
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Isogeometric Analysis and Software Design
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Applications: Nucleate Boiling

  

∇ρ ⋅n = 0
      u1 = 0
∇θ ⋅n = 0   

∇ρ ⋅n = 0
      u1 = 0
∇θ ⋅n = 0

   ∇ρ ⋅n = 0     u2 = 0     θ = θh(x) = 0.950 +δ 2θ(x)

   ∇ρ ⋅n = 0     u2 = 0     θ = θc (x) = 0.775 +δ1θ(x)

• Ω = (0, 1)× (0, 0.5) and b = (0;−0.025)T

• µ̄ = Cµρ and κ = Cκρ
• Cµ = 1.15× 10−4,Cκ = 1.725× 10−5,We = 8.401× 106, and γ = 1.333
• 2048× 1024 uniform quadratic NURBS, ∆t = 5.0× 10−4, and T = 100.0
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Applications: Nucleate Boiling

t =0.0 t =1.25

t =18.75 t =62.5
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Applications: Nucleate Boiling
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movie_boiling21_rho.mp4
Media File (video/mp4)



Applications: Film Boiling

  

∇ρ ⋅n = 0
      u1 = 0
∇θ ⋅n = 0   

∇ρ ⋅n = 0
      u1 = 0
∇θ ⋅n = 0

   ∇ρ ⋅n = 0     u2 = 0     θ = θh(x) = 0.950 +δ 2θ(x)

   ∇ρ ⋅n = 0     u2 = 0     θ = θc (x) = 0.775 +δ1θ(x)

• Ω = (0, 1)× (0, 0.5) and b = (0;−0.025)T

• µ̄ = Cµρ and κ = Cκρ
• Cµ = 4.60× 10−4,Cκ = 1.725× 10−5,We = 8.401× 106, and γ = 1.333
• 2048× 1024 uniform quadratic NURBS, ∆t = 5.0× 10−4, and T = 500.0

36 / 44



Applications: Film Boiling

t =0.0 t =100.0

t =200.0 t =225.0
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Applications: Film Boiling
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movie_boiling23_rho.mp4
Media File (video/mp4)



Applications: Three-dimensional boiling

  θ = θc (x) = 0.775 +δ1θ(x)

  θ = θh(x) = 0.850 +δ 2θ(x)

• Ω = (0, 1)× (0, 0.5)× (0, 0.25)
• µ̄ = Cµρ and κ = Cκρ
• Cµ = 1.289× 10−4,Cκ = 7.732× 10−5,We = 6.533× 105, and γ = 1.333
• 600× 300× 150 uniform quadratic NURBS and ∆t = 2.0× 10−3

• ∇ρ · n = 0 and slip boundary condition for u on ∂Ω
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Applications: Three-dimensional boiling

t = 4.0t =0.2

t =8.0 t =12.0

Condensa(on	
  

40 / 44



Applications: Three-dimensional Boiling
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boiling3d_rho.mp4
Media File (video/mp4)



Applications: Three-dimensional Boiling
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boiling3d_tem.mp4
Media File (video/mp4)
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Conclusions and Future Work

Conclusions
X A thermodynamically consistent modeling framework for multiphase flows is

developed based on the concept of microforces.
The interstitial working flux of Dunn and Serrin is derived from fundamental
hypothesis.

X The notion of entropy variables is generalized to the functional setting and is
applied to the Navier-Stokes-Korteweg equations to construct an entropy-stable
spatial discretization.

X A second-order accurate, unconditionally entropy-stable, time-stepping method is
developed based on special quadrature rules.

There are no convexity requirements.
X The formulation constitutes a new approach to simulate boiling.

Two-dimensional nucleate boiling
Two-dimensional film boiling
Three-dimensional boiling

“When a bubble reaches the top cold plate, it is removed from the calculation to
model condensation and a new bubble is introduced at a random position on the
bottom hot plate [...]”
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