Multiphase Flows: Thermomechanical Theory, Algorithms, and Simulations Ju Liu

Outline

2/44

- Motivation
- Thermomechanical Theory
 - Continuum theory
 - Thermodynamics of the van der Waals model
- Algorithms
 - Entropy variables and spatial discretization
 - Quadrature rules and temporal discretization
 - Parallel code development and code verification
- Boiling simulations
- Conclusions
- Future work

Motivation: Multiphase Flows

Phase: material component.

The Great Wave off Kanagawa

Multicomponent flow in a reservoir

Tumor growth

Viscous fingering

D. Richter and F. Veron, Ocean spray: An outsized influence on weather and climate, Physics Today, 69, 11, 34 (2016).

ICES Tumor Modeling Group, Toward Predictive Multiscale Modeling of Vascular Tumor Growth: Computational and Experimental Oncology for Tumor Prediction, ICES Report 2015.

Motivation: Multiphase Flows

Phase: state of matter.

boiling heat transfer

cavitating flow

 $\rho = \rho(p,\theta) \Rightarrow \frac{1}{\rho} \frac{D\rho}{Dt} = \frac{1}{\rho} \frac{\partial \rho}{\partial p} \frac{Dp}{Dt} + \frac{1}{\rho} \frac{\partial \rho}{\partial \theta} \frac{D\theta}{Dt}$

Motivation: Boiling Models

0000

Nucleate boiling

- bubbles are released from discrete sites of the heated surface
- efficient in heat transfer
- very few numerical studies:
 - level-set method by V.K. Dhir's group
- × Dhir's approach requires empirical knowledge

Film boiling

- bubbles are generated from an unstable vapor film
- dangerous for the solid surface
- amenable to analysis:

- level-set method by V.K. Dhir's group,
- front-tracking method by G. Tryggvason's group,
- VOF approach by S.W. Welch et al.
- $\times\,$ all the models start with a pre-existing thin vapor film

V.K. Dhir, Boiling heat transfer. Annual Review of Fluid Mechanics, 1998. R. Lakkaraju, et al. Heat transport in bubbling turbulent convection. PNAS, 2013.

Motivation: Boiling Models

0000

Nucleate boiling

- bubbles are released from discrete sites of the heated surface
- efficient in heat transfer
- very few numerical studies:
 - level-set method by V.K. Dhir's group
- × Dhir's approach requires empirical knowledge

Film boiling

- bubbles are generated from an unstable vapor film
- dangerous for the solid surface
- amenable to analysis:

- level-set method by V.K. Dhir's group,
- front-tracking method by G. Tryggvason's group,
- VOF approach by S.W. Welch et al.
- $\times\,$ all the models start with a pre-existing thin vapor film

"When a bubble reaches the top cold plate, it is removed from the calculation to model condensation and a new bubble is introduced at a random position on the bottom hot plate [...]"

V.K. Dhir, Boiling heat transfer. Annual Review of Fluid Mechanics, 1998. R. Lakkaraju, et al. Heat transport in bubbling turbulent convection. PNAS, 2013.

 Classical multiphase solvers (e.g. VOF, Level-set methods, Front tracking method, etc.) are based on geometrical description of existing interfaces.

D.M. Anderson, et al. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech., 1998.

- Classical multiphase solvers (e.g. VOF, Level-set methods, Front tracking method, etc.) are based on geometrical description of existing interfaces.
- Interfacial physics are described by phenomenological relations, such as the Young-Laplace law.

 $\Delta p = \tilde{\gamma} \tilde{\kappa} \rightarrow \infty$ as the bubble radius goes to 0.

- Classical multiphase solvers (e.g. VOF, Level-set methods, Front tracking method, etc.) are based on geometrical description of existing interfaces.
- Interfacial physics are described by phenomenological relations, such as the Young-Laplace law.

 $\Delta p = \tilde{\gamma} \tilde{\kappa} \rightarrow \infty$ as the bubble radius goes to 0.

"Classical models break down when the interfacial thickness is comparable to the length scale of the phenomena being examined."

- Classical multiphase solvers (e.g. VOF, Level-set methods, Front tracking method, etc.) are based on geometrical description of existing interfaces.
- Interfacial physics are described by phenomenological relations, such as the Young-Laplace law.

 $\Delta p = \tilde{\gamma} \tilde{\kappa} \rightarrow \infty$ as the bubble radius goes to 0.

"Classical models break down when the interfacial thickness is comparable to the length scale of the phenomena being examined."

D.M. Anderson, et al. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech., 1998.

- Nonlinear stability
 - Entropy stable fully discrete schemes utilizing the convexity of the mathematical entropy functions have been developed for the compressible Euler and Navier-Stokes equations in the 1980s.
 - For phase-field models, convexity is lost.
 - An appropriate notion of nonlinear stability (i.e., entropy) needs to be developed for phase-field models and new algorithms are needed.
- Isogeometric analysis
 - Exact geometric representation.
 - k-refinement.
 - Robustness.

T.J.R. Hughes, et al., A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. CMAME, 1986.

T.J.R. Hughes, et al., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. CMAME, 2005.

Outline

- Motivation
- Thermomechanical Theory
 - Continuum theory
 - Thermodynamics of the van der Waals model
- Algorithms
 - Entropy variables and spatial discretization
 - Quadrature rules and temporal discretization
 - Parallel code development and code verification
- Applications
 - Thermocapillary Motion
 - Boiling
- Conclusions
- Future work

"If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations – then so much the worse for Maxwell's equations. If it is found to be contradicted by observation – well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation."

- Sir Arthur S. Eddington, 1915

Modeling techniques

- Balance laws
- Microforce balance equations
- Truesdell equipresence principle
- Coleman-Noll approach

B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, ARMA, 1963. J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations, CMAME, 2015.

Conservation of mass

 $\frac{d}{dt}\int_{\Omega_t}\rho dV_{\mathbf{x}} = 0.$

Conservation of mass

$$\frac{d}{dt}\int_{\Omega_t}\rho dV_{\mathbf{x}} = 0.$$

• Balance of components

Conservation of mass

$$\frac{d}{dt}\int_{\Omega_t}\rho dV_{\mathbf{x}} = 0.$$

• Balance of components

• Balance of linear momentum

$$\frac{d}{dt} \int_{\Omega_t} \rho \mathbf{u} dV_{\mathbf{x}} = \int_{\partial \Omega_t} \boldsymbol{\sigma} dA_{\mathbf{x}} + \int_{\Omega_t} \rho \mathbf{b} dV_{\mathbf{x}},$$
$$\boldsymbol{\sigma} = \mathbf{Tn}.$$

• Balance of angular momentum

$$\frac{d}{dt} \int_{\Omega_t} \mathbf{x} \times \rho \mathbf{u} dV_{\mathbf{x}} = \int_{\partial \Omega_t} \mathbf{x} \times \boldsymbol{\sigma} dA_{\mathbf{x}} + \int_{\Omega_t} \mathbf{x} \times \rho \mathbf{b} dV_{\mathbf{x}}.$$

"fundamental physical laws involving energy should account for the working associated with each operative kinematical process [...] and it seems plausible that there should be 'microforces' whose working accompanies changes in ρ ."

- M.E. Gurtin, 1996

Fundamental Postulate

There exists a set of microscopic forces that accompanies the evolution of each phase-field order parameter.

Phase-field order parameter for the transition of the state of matter $\Rightarrow \rho$.

M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D, 1996.

• Balance of microforces associated with ho

$$\int_{\partial\Omega_t} \boldsymbol{\xi} \cdot \mathbf{n} dA_{\mathbf{x}} + \int_{\Omega_t} \varrho dV_{\mathbf{x}} + \int_{\Omega_t} \iota dV_{\mathbf{x}} = 0.$$

ξ: microstress,

e: internal microforce,

I: external microforce.

M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D, 1996.

• Balance of microforces associated with ho

$$\int_{\partial\Omega_t} \boldsymbol{\xi} \cdot \mathbf{n} dA_{\mathbf{x}} + \int_{\Omega_t} \varrho dV_{\mathbf{x}} + \int_{\Omega_t} \iota dV_{\mathbf{x}} = 0.$$

- ξ : microstress, ϱ : internal microforce, \mathfrak{l} : external microforce.
- Balance of energy

$$\frac{d}{dt} \int_{\Omega_t} \rho E dV_{\mathbf{x}} := \frac{d}{dt} \int_{\Omega_t} \underbrace{\rho E dV_{\mathbf{x}}}_{\rho t} := \frac{d}{dt} \int_{\Omega_t} \underbrace{\rho U}_{\rho t} + \underbrace{\rho U}_{\rho t} = \int_{\partial \Omega_t} \left(\mathbf{T} \mathbf{u} + \frac{d}{dt} \rho \boldsymbol{\xi} - \mathbf{q} \right) \cdot \mathbf{n} dA_{\mathbf{x}} + \int_{\Omega_t} \rho \mathbf{b} \cdot \mathbf{u} + \left[\frac{d}{dt} \rho + \rho r dV_{\mathbf{x}} \right].$$

M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D, 1996.

• Balance of microforces associated with ho

$$\int_{\partial\Omega_t} \boldsymbol{\xi} \cdot \mathbf{n} dA_{\mathbf{x}} + \int_{\Omega_t} \varrho dV_{\mathbf{x}} + \int_{\Omega_t} \iota dV_{\mathbf{x}} = 0.$$

- $\boldsymbol{\xi}$: microstress, ϱ : internal microforce, \boldsymbol{l} : external microforce.
- Balance of energy

$$\frac{d}{dt} \int_{\Omega_t} \rho E dV_{\mathbf{x}} := \frac{d}{dt} \int_{\Omega_t} \underbrace{\rho E dV_{\mathbf{x}}}_{\rho t} := \frac{d}{dt} \int_{\Omega_t} \underbrace{\rho E dV_{\mathbf{x}}}_{\rho t} := \int_{\partial \Omega_t} \left(\mathbf{T} \mathbf{u} + \frac{d}{dt} \rho \boldsymbol{\xi} - \mathbf{q} \right) \cdot \mathbf{n} dA_{\mathbf{x}} + \int_{\Omega_t} \rho \mathbf{b} \cdot \mathbf{u} + \mathbf{l} \frac{d}{dt} \rho + \rho r dV_{\mathbf{x}}.$$

• The second law of thermodynamics

$$\int_{\Omega_t} \mathcal{D}dV_{\mathbf{x}} := \frac{d}{dt} \int_{\Omega_t} \rho s dV_{\mathbf{x}} + \int_{\partial\Omega_t} \frac{\mathbf{q} \cdot \mathbf{n}}{\theta} dA_{\mathbf{x}} - \int_{\Omega_t} \frac{\rho r}{\theta} dV_{\mathbf{x}} \ge 0.$$

M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D, 1996. $\begin{array}{ll} \text{Conservation of mass} \quad \frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{u} = 0, \\ \text{Balance of linear momentum} \quad \rho \frac{d\mathbf{u}}{dt} = \nabla \cdot \mathbf{T} + \rho \mathbf{b}, \\ \text{Balance of angular momentum} \quad \mathbf{T} = \mathbf{T}^T, \\ \text{Balance of microforce} \quad \nabla \cdot \boldsymbol{\xi} + \rho + \mathfrak{l} = 0, \\ \text{Balance of energy} \quad \rho \frac{dE}{dt} = \nabla \cdot \left(\mathbf{T} \mathbf{u} + \frac{d\rho}{dt} \boldsymbol{\xi} - \mathbf{q} \right) + \rho \mathbf{b} \cdot \mathbf{u} + \mathfrak{l} \frac{d\rho}{dt} + \rho r, \\ \text{The second law} \quad \mathcal{D} := \rho \frac{ds}{dt} + \nabla \cdot \left(\frac{\mathbf{q}}{\theta} \right) - \frac{\rho r}{\theta} \geq 0. \end{array}$

B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 1968. J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations, CMAME 2015.

Conservation of mass $\frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{u} = 0$, Balance of linear momentum $\rho \frac{d\mathbf{u}}{dt} = \nabla \cdot \mathbf{T} + \rho \mathbf{b},$ Balance of angular momentum $\mathbf{T} = \mathbf{T}^T$, Balance of microforce $\nabla \cdot \boldsymbol{\xi} + \rho + \boldsymbol{\mathfrak{l}} = 0$, Balance of energy $\rho \frac{dE}{dt} = \nabla \cdot \left(\mathbf{T} \mathbf{u} + \frac{d\rho}{dt} \boldsymbol{\xi} - \mathbf{q} \right) + \rho \mathbf{b} \cdot \mathbf{u} + \mathfrak{l} \frac{d\rho}{dt} + \rho r,$ The second law $\mathcal{D} := \rho \frac{ds}{dt} + \nabla \cdot \left(\frac{\mathbf{q}}{\theta}\right) - \frac{\rho r}{\theta} \ge 0.$ Truesdell's principle of equipresence + Coleman-Noll approach

B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 1968. J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations, CMAME 2015.

Constitutive relations

The constitutive relations are represented in terms of the Helmholtz free energy $\Psi.$

• Microstresses

$$\boldsymbol{\xi} = \rho \frac{\partial \Psi}{\partial \left(\nabla \rho \right)}.$$

Heat flux

$$\mathbf{q} = -\kappa \nabla \theta.$$

• Cauchy stress

$$\begin{split} \mathbf{T} = & 2\bar{\mu}\mathbf{L}^{d} - \frac{\rho}{2}\left(\nabla\rho\otimes\frac{\partial\Psi}{\partial\left(\nabla\rho\right)} + \frac{\partial\Psi}{\partial\left(\nabla\rho\right)}\otimes\nabla\rho\right) \\ & + \left(\rho\nabla\cdot\left(\rho\frac{\partial\Psi}{\partial\left(\nabla\rho\right)}\right) - \rho^{2}\frac{\partial\Psi}{\partial\rho} + \rho\mathfrak{l} + B\rho^{2}\nabla\cdot\mathbf{u}\right)\mathbf{I}. \end{split}$$

• Entropy density per unit mass

$$s = -\partial \Psi / \partial \theta.$$

Theorem (Dissipation for isolated systems)

Given the above constitutive relations, the dissipation ${\cal D}$ takes the following form:

$$\rho \frac{ds}{dt} + \nabla \cdot \left(\frac{\mathbf{q}}{\theta}\right) - \frac{\rho r}{\theta} = \mathcal{D} = \frac{2\bar{\mu}}{\theta} |\mathbf{L}^d|^2 + \frac{1}{\theta} B \rho^2 \left(\nabla \cdot \mathbf{u}\right)^2 + \frac{1}{\theta^2} \kappa |\nabla \theta|^2 \ge 0.$$

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proceedings of the Royal Society of London

Theorem (Dissipation for isolated systems)

Given the above constitutive relations, the dissipation \mathcal{D} takes the following form:

$$\rho \frac{ds}{dt} + \nabla \cdot \left(\frac{\mathbf{q}}{\theta}\right) - \frac{\rho r}{\theta} = \mathcal{D} = \frac{2\bar{\mu}}{\theta} |\mathbf{L}^d|^2 + \frac{1}{\theta} B \rho^2 \left(\nabla \cdot \mathbf{u}\right)^2 + \frac{1}{\theta^2} \kappa |\nabla \theta|^2 \ge 0.$$

- The perfect gas model
- The van der Waals liquid-vapor two-phase fluid model
- The Navier-Stokes-Cahn-Hilliard multicomponent fluid model
- The Navier-Stokes-Cahn-Hilliard-Korteweg multicomponent multiphase fluid model

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proceedings of the Royal Society of London

Outline

- Motivation
- Thermomechanical Theory
 - Continuum theory
 - Thermodynamics of the van der Waals model
- Algorithms
 - Entropy variables and spatial discretization
 - Quadrature rules and temporal discretization
 - Parallel code development and code verification
- Boiling simulations
- Conclusions
- Future work

Continuum Theory: The van der Waals Fluid Model

Thermodynamic potential

$$\begin{split} \Psi(\rho, \theta, \nabla \rho) &= \Psi_{loc}(\rho, \theta) + \frac{\lambda}{2\rho} |\nabla \rho|^2, \Leftarrow \text{regularization} \\ \Psi_{loc}(\rho, \theta) &= -a\rho + R\theta \log\left(\frac{\rho}{b-\rho}\right) - C_v \theta \log\left(\frac{\theta}{\theta_{ref}}\right) + C_v \theta \end{split}$$

Density ρ

J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Z. Physik. Chem, 1894.

Comparison of the van der Waals equation of state with real fluids at $\theta = 0.95\theta_{crit}$.

NIST, Thermophysical Properties of Fluid Systems. [Online; accessed 11-February-2016].

- Motivation
- Thermomechanical Theory
 - Continuum theory
 - Thermodynamics of the van der Waals model
- Algorithms
 - Entropy variables and spatial discretization
 - Quadrature rules and temporal discretization
 - Parallel code development and code verification
- Boiling simulations
- Conclusions
- Future work

Given the conservation variables $\mathbf{U} = \{\rho; \rho \mathbf{u}^T; \rho E\}^T$, and the mathermatical entropy function $H := -\rho s$, the entropy variables are defined as $\mathbf{V} = \partial H / \partial \mathbf{U}$.

A. Harten, On the symmetric form of systems of conservation laws with entropy. JCP, 1983.

Given the conservation variables $\mathbf{U} = \{\rho; \rho \mathbf{u}^T; \rho E\}^T$, and the mathermatical entropy function $H := -\rho s$, the entropy variables are defined as $\mathbf{V} = \partial H / \partial \mathbf{U}$.

 $\int_{\Omega} \underbrace{\mathbf{V}}_{\text{test function}} \cdot (\text{ Balance Equations }) \, d\mathbf{x} = 0 \quad \Leftrightarrow \quad \text{Clausius-Duhem inequality.}$

 ${\bf V}$ lives in the test function spaces.

A. Harten, On the symmetric form of systems of conservation laws with entropy. JCP, 1983

Given the conservation variables $\mathbf{U} = \{\rho; \rho \mathbf{u}^T; \rho E\}^T$, and the mathermatical entropy function $H := -\rho s$, the entropy variables are defined as $\mathbf{V} = \partial H / \partial \mathbf{U}$.

 $\int_{\Omega} \underbrace{\mathbf{V}}_{\text{test function}} \cdot (\text{ Balance Equations }) \, d\mathbf{x} = 0 \quad \Leftrightarrow \quad \text{Clausius-Duhem inequality.}$

 ${\bf V}$ lives in the test function spaces.

Solve the equations in terms of V, if there is a well-defined algebraic change-of-variables between U and V.

There is a well-defined algebraic change-of-variables for ideal gas.

↑ Aerodynamists are lucky.

A. Harten, On the symmetric form of systems of conservation laws with entropy. JCP, 1983.

Given the conservation variables $\mathbf{U} = \{\rho; \rho \mathbf{u}^T; \rho E\}^T$, and the mathermatical entropy function $H := -\rho s$, the entropy variables are defined as $\mathbf{V} = \partial H / \partial \mathbf{U}$.

 $\int_{\Omega} \underbrace{\mathbf{V}}_{\text{test function}} \cdot (\text{ Balance Equations }) \, d\mathbf{x} = 0 \quad \Leftrightarrow \quad \text{Clausius-Duhem inequality.}$

 ${\bf V}$ lives in the test function spaces.

Solve the equations in terms of V, if there is a well-defined algebraic change-of-variables between U and V.

There is a well-defined algebraic change-of-variables for ideal gas.

Aerodynamists are lucky.

For the Navier-Stokes-Korteweg equations (in fact, all phase-field models), the mapping from \mathbf{U} to \mathbf{V} is not invertible!

A. Harten, On the symmetric form of systems of conservation laws with entropy. JCP, 1983.

NIST, Thermophysical Properties of Fluid Systems. [Online; accessed 11-February-2016].

Mathematical entropy function

$$\begin{aligned} H &:= -\rho s = \frac{8}{27}\rho \log\left(\frac{\rho}{1-\rho}\right) - \frac{8}{27(1-\gamma)}\rho \log\left(\theta\right),\\ \theta &= \theta(\rho, \rho \mathbf{u}, \rho E, \nabla \rho). \end{aligned}$$

$$\mathbf{V} := \frac{\delta H}{\delta \mathbf{U}} = [V_1; V_2; V_3; V_4; V_5]^T .$$

$$V_1[\delta v_1] = \frac{1}{\theta} \left(-2\rho + \frac{8}{27}\theta \log\left(\frac{\rho}{1-\rho}\right) - \frac{8}{27(\gamma-1)}\theta \log\left(\theta\right) + \frac{8}{27(\gamma-1)}\theta + \frac{8\theta}{27(1-\rho)} - \frac{|\mathbf{u}|^2}{2} \right) \delta v_1 + \frac{1}{\mathrm{We}} \frac{1}{\theta} \nabla \rho \cdot \nabla \delta v_1,$$

$$V_2[\delta v_2] = \frac{u_1}{\theta} \delta v_2, \quad V_3[\delta v_3] = \frac{u_2}{\theta} \delta v_3, \quad V_4[\delta v_4] = \frac{u_3}{\theta} \delta v_4,$$

$$V_5[\delta v_5] = -\frac{1}{\theta} \delta v_5.$$

J. Liu, et al., Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg Equations. JCP, 2013.

Stability of the weak formulation

The solutions of the ${\it semi-discrete}$ finite element formulation based on the ${\it functional}$ entropy variables ${\bf V}$ satisfy

$$\begin{split} \int_{\Omega} \left(\frac{\partial H(\rho^h, \theta^h)}{\partial t} + \nabla \cdot \left(H(\rho^h, \theta^h) \mathbf{u}^h \right) - \nabla \cdot \left(\frac{\mathbf{q}^h}{\theta^h} \right) + \frac{\rho^h r}{\theta^h} \right) d\mathbf{x} \\ &= -\int_{\Omega} \frac{1}{\theta^h} \boldsymbol{\tau}^h : \nabla \mathbf{u}^h d\mathbf{x} - \int_{\Omega} \frac{\kappa |\nabla \theta^h|^2}{\theta^2} d\mathbf{x}. \end{split}$$

The *spatial* discretization is stable. Now we need to design a *time-stepping* algorithm that preserves this stability.

J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations, CMAME, 2015.

Outline

- Motivation
- Thermomechanical Theory
 - Continuum theory
 - Thermodynamics of the van der Waals model
- Algorithms
 - Entropy variables and spatial discretization
 - Quadrature rules and temporal discretization
 - Parallel code development and code verification
- Boiling simulations
- Conclusions
- Future work

- Runge-Kutta : no stability proof for nonlinear problems;
- Generalized- α method : no stability proof for nonlinear problems;
- Space-time formulation : stability requires convexity of the energy.

1. D.J. Eyre, An unconditionally stable one-step scheme for gradient systems. published on line.

2. H. Gomez and T.J.R. Hughes, Provably Unconditionally Stable, Second-order Time-accurate, Mixed Variational Methods for Phase-field Models. JCP, 2011.

3. J. Liu, et al. Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg Equations. JCP 2013.

4. G. Tierra and F. Guillen-Gonzalez. Numerical Methods for Solving the Cahn-Hilliard Equation and Its Applicability to Related Energy-Based Models. Archives of Computational Methods in Engineering, 2015.

5. J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations, CMAME, 2015.

- Runge-Kutta : no stability proof for nonlinear problems;
- Generalized- α method : no stability proof for nonlinear problems;
- Space-time formulation : stability requires convexity of the energy.

A suite of new time integration schemes is developed.

- Rectangular quadrature rules $^{1,3} \Leftrightarrow$ Eyre's method;
- Perturbed trapezoidal rules² \Leftrightarrow Gomez-Hughes method;
- Perturbed mid-point rules³: Second-order accurate, less numerical dissipation;

1. D.J. Eyre, An unconditionally stable one-step scheme for gradient systems. published on line.

2. H. Gomez and T.J.R. Hughes, Provably Unconditionally Stable, Second-order Time-accurate, Mixed Variational Methods for Phase-field Models. JCP, 2011.

3. J. Liu, et al. Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg Equations. JCP 2013.

4. G. Tierra and F. Guillen-Gonzalez. Numerical Methods for Solving the Cahn-Hilliard Equation and Its Applicability to Related Energy-Based Models. Archives of Computational Methods in Engineering, 2015.

5. J. Liu, et al., Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations, CMAME, 2015.

^{•4,5}

Discrete entropy dissipation and time accuracy

1. The fully discrete scheme is unconditionally entropy-stable in the following sense.

$$\int_{\Omega} \left(\frac{H(\rho_{n+1}^{h}, \theta_{n+1}^{h}) - H(\rho_{n}^{h}, \theta_{n}^{h})}{\Delta t_{n}} + \nabla \cdot \left(H(\rho_{n+\frac{1}{2}}^{h}, \theta_{n+\frac{1}{2}}^{h}) \mathbf{u}_{n+\frac{1}{2}}^{h} \right) \right) d\mathbf{x}$$

$$= -\nabla \cdot \left(\mathbf{q}_{n+\frac{1}{2}}^{h} / \theta_{n+\frac{1}{2}}^{h} \right) + \rho_{n+\frac{1}{2}}^{h} r / \theta_{n+\frac{1}{2}}^{h} \right) d\mathbf{x}$$

$$= -\int_{\Omega} \frac{1}{\theta_{n+\frac{1}{2}}^{h}} \tau_{n+\frac{1}{2}}^{h} : \nabla \mathbf{u}_{n+\frac{1}{2}}^{h} d\mathbf{x} - \int_{\Omega} \frac{\kappa |\nabla \theta_{n+\frac{1}{2}}^{h}|^{2}}{\left(\theta_{n+\frac{1}{2}}^{h}\right)^{2}} d\mathbf{x}$$

$$= -\int_{\Omega} \frac{1}{\theta_{n+\frac{1}{2}}^{h} \Delta t_{n}} \left(\frac{\left[\rho_{n}^{h} \right]^{4}}{24} \frac{\partial^{3} \nu_{loc}}{\partial \rho^{3}} (\rho_{n+\xi_{1}}^{h}, \theta_{n+\frac{1}{2}}^{h}) - \frac{\left[\theta_{n}^{h} \right]^{4}}{24} \frac{\partial^{3} H}{\partial \theta^{3}} (\rho_{n+\frac{1}{2}}^{h}, \theta_{n+\xi_{2}}^{h}) \right) d\mathbf{x} \leq 0.$$

$$= -\int_{\Omega} \frac{1}{\theta_{n+\frac{1}{2}}^{h} \Delta t_{n}} \left(\frac{\left[\rho_{n}^{h} \right]^{4}}{24} \frac{\partial^{3} \nu_{loc}}{\partial \rho^{3}} (\rho_{n+\xi_{1}}^{h}, \theta_{n+\frac{1}{2}}^{h}) - \frac{\left[\theta_{n}^{h} \right]^{4}}{24} \frac{\partial^{3} H}{\partial \theta^{3}} (\rho_{n+\frac{1}{2}}^{h}, \theta_{n+\xi_{2}}^{h}) \right) d\mathbf{x} \leq 0.$$

$$= -\int_{\Omega} \frac{1}{\theta_{n+\frac{1}{2}}^{h} \Delta t_{n}} \left(\frac{\left[\rho_{n}^{h} \right]^{4}}{24} \frac{\partial^{3} \nu_{loc}}{\partial \rho^{3}} (\rho_{n+\xi_{1}}^{h}, \theta_{n+\frac{1}{2}}^{h}) - \frac{\left[\theta_{n}^{h} \right]^{4}}{24} \frac{\partial^{3} H}{\partial \theta^{3}} (\rho_{n+\frac{1}{2}}^{h}, \theta_{n+\xi_{2}}^{h}) \right) d\mathbf{x} \leq 0.$$

$$= -\int_{\Omega} \frac{1}{\theta_{n+\frac{1}{2}}^{h} \Delta t_{n}} \left(\frac{\left[\rho_{n}^{h} \right]^{4}}{24} \frac{\partial^{3} \nu_{loc}}{\partial \rho^{3}} (\rho_{n+\frac{1}{2}}^{h}, \theta_{n+\frac{1}{2}}^{h}) - \frac{\left[\theta_{n+\frac{1}{2}}^{h} \right]^{2}}{24} \frac{\partial^{3} H}{\partial \theta^{3}} (\rho_{n+\frac{1}{2}}^{h}, \theta_{n+\frac{1}{2}}^{h}) d\mathbf{x} \leq 0.$$

all $t_n \in [0, T]$, where K is a constant independent of Δt_n . and $\mathbf{1}_5 = (1; 1; 1; 1)^T$.

Outline

- Motivation
- Thermomechanical Theory
 - Continuum theory
 - Thermodynamics of the van der Waals model
- Algorithms
 - Entropy variables and spatial discretization
 - Quadrature rules and temporal discretization
 - Parallel code development and code verification
- Boiling simulations
- Conclusions
- Future work

Isogeometric Analysis and Software Design

CMake

METIS

PERIGEE: an object-oriented C++ code for parallel FEM/IGA multiscale multiphysics simulations:

- Cahn-Hilliard equation;
- Navier-Stokes-Korteweg equation;
- Incompressible Navier-Stokes equation;
- Fluid-structure interaction (ongoing);
- etc.

J. Liu, Thermodynamically Consistent Modeling and Simulation of Multiphase Flows. Ph.D. Dissertation, The University of Texas at Austin, 2014.

Isogeometric Analysis and Software Design

Stampede A 10 PFLOPS (PF) Dell Linux Cluster at TACC; The 10th fastest supercomputer in the world. Maverick An HP/NVIDIA Interactive Visualization and Data Analytics System.

Top500 Supercomputer Sites, www.top500.org.

J. Liu, Thermodynamically Consistent Modeling and Simulation of Multiphase Flows. Ph.D. Dissertation, The University of Texas at Austin, 2014.

Outline

- Motivation
- Thermomechanical Theory
 - Continuum theory
 - Thermodynamics of the van der Waals model
- Algorithms
 - Entropy variables and spatial discretization
 - Quadrature rules and temporal discretization
 - Parallel code development and code verification
- Boiling simulations
- Conclusions
- Future work

•
$$\Omega = (0,1) \times (0,0.5)$$
 and $\mathbf{b} = (0;-0.025)^T$

- $\bar{\mu} = C_{\mu}\rho$ and $\kappa = C_{\kappa}\rho$
- $C_{\mu} = 1.15 \times 10^{-4}, C_{\kappa} = 1.725 \times 10^{-5}, We = 8.401 \times 10^{6}$, and $\gamma = 1.333$
- 2048×1024 uniform quadratic NURBS, $\Delta t = 5.0 \times 10^{-4}$, and T = 100.0

•
$$\Omega = (0,1) \times (0,0.5)$$
 and $\mathbf{b} = (0;-0.025)^T$

•
$$\bar{\mu} = C_{\mu}\rho$$
 and $\kappa = C_{\kappa}\rho$

• $C_{\mu} = 4.60 \times 10^{-4}, C_{\kappa} = 1.725 \times 10^{-5}, We = 8.401 \times 10^{6}, and \gamma = 1.333$

• 2048×1024 uniform quadratic NURBS, $\Delta t = 5.0 \times 10^{-4}$, and T = 500.0

- $\Omega = (0,1) \times (0,0.5) \times (0,0.25)$
- $\bar{\mu} = C_{\mu}\rho$ and $\kappa = C_{\kappa}\rho$
- $C_{\mu} = 1.289 \times 10^{-4}, C_{\kappa} = 7.732 \times 10^{-5}, We = 6.533 \times 10^{5}, and \gamma = 1.333$
- + $600 \times 300 \times 150$ uniform quadratic NURBS and $\Delta t = 2.0 \times 10^{-3}$
- $\nabla \rho \cdot \mathbf{n} = 0$ and slip boundary condition for \mathbf{u} on $\partial \Omega$

Outline

- Motivation
- Thermomechanical Theory
 - Continuum theory
 - Thermodynamics of the van der Waals model
- Algorithms
 - Entropy variables and spatial discretization
 - Quadrature rules and temporal discretization
 - Parallel code development and code verification
- Boiling simulations
- Conclusions
- Future work

Conclusions

- ✓ A thermodynamically consistent modeling framework for multiphase flows is developed based on the concept of microforces.
 - The interstitial working flux of Dunn and Serrin is derived from fundamental hypothesis.
- ✓ The notion of entropy variables is generalized to the functional setting and is applied to the Navier-Stokes-Korteweg equations to construct an entropy-stable spatial discretization.
- ✓ A second-order accurate, unconditionally entropy-stable, time-stepping method is developed based on special quadrature rules.
 - There are no convexity requirements.
- \checkmark The formulation constitutes a new approach to simulate boiling.
 - Two-dimensional nucleate boiling
 - Two-dimensional film boiling
 - Three-dimensional boiling

R. Lakkaraju, et al. Heat transport in bubbling turbulent convection. PNAS, 2013.

Conclusions

- ✓ A thermodynamically consistent modeling framework for multiphase flows is developed based on the concept of microforces.
 - The interstitial working flux of Dunn and Serrin is derived from fundamental hypothesis.
- ✓ The notion of entropy variables is generalized to the functional setting and is applied to the Navier-Stokes-Korteweg equations to construct an entropy-stable spatial discretization.
- $\checkmark\,$ A second-order accurate, unconditionally entropy-stable, time-stepping method is developed based on special quadrature rules.
 - There are no convexity requirements.
- \checkmark The formulation constitutes a new approach to simulate boiling.
 - Two-dimensional nucleate boiling
 - Two-dimensional film boiling
 - Three-dimensional boiling

"When a bubble reaches the top cold plate, it is removed from the calculation to model condensation and a new bubble is introduced at a random position on the bottom hot plate [...]"

R. Lakkaraju, et al. Heat transport in bubbling turbulent convection. PNAS, 2013.